Showing posts with label climate change. Show all posts
Showing posts with label climate change. Show all posts

Saturday, December 13, 2008

Pedology and CO2

In a previous post I provided an oblique link to a news release: Climate Change Alters Ocean Chemistry. It makes reference to conditions resonating with the theory of biorhexistacy:

The research team, which included Caldeira, Elizabeth M. Griffith and Adina Paytan of the University of California, Santa Cruz, plus two other colleagues, studied core samples of deep oceanic sediment recovered from the Pacific Ocean Basin. By analyzing the calcium isotopes in grains of the mineral barite in different layers, they determined that between 13 and 8 million years ago the ocean’s calcium levels shifted dramatically. The shift corresponds to the growth of the Antarctic ice sheets during the same time interval. Because of the huge volume of water that became locked up in the ice cap, sea level also dropped.

“The climate got colder, ice sheets expanded, sea level dropped, and the intensity, type, and extent of weathering on land changed,” explains Griffith.

“This caused changes in ocean circulation and in the amount and composition of what rivers delivered to the ocean,” adds Paytan. “This in turn impacted the biology and chemistry of the ocean.”


These folks are saying that momentous changes in oceanic chemistry recorded in the sediment record must have been predicated by equally momentous changes in soil chemistry, changes tied to both atmospheric carbon dioxide content and climatic conditions.

From a pedologist's view, it is clear that under the expanded humid, warm, stable conditions envisioned by H. Erhart for biostasis, we would see deeper residual soils and more rapid formation of argillic horizons. In terms of soil taxonomic orders (USDA), more intense chemical weathering would cause the expansion of inceptisols at the expense of mollisols, ultisols at the expense of alfisols, and oxisols at the expense of ultisols.

Caldeira and company tie warm climate to higher river calcium content, but strongly implicate higher atmospheric carbon dioxide as the primary driver of increased chemical weathering. Atmospheric carbon dioxide levels do not appear to be part of Erhart's construct, but could certainly enhance these pedogenetic trends.

Acid rain alarm bells are ringing faintly in the distance at this point. But it is a false alarm. Rain water pH is due mostly to equilibrium with atmospheric carbon dioxide. The carbonic acid formed buffers rain drop pH to 5.6, and higher atmospheric carbon dioxide increases the carbonic acid content, but it doesn't lower pH below 5.6. Other constituents accomplish that. Thus increased atmospheric carbon dioxide isn't being implicated in some futuristic acid rain scenario.

Oxisols, ultisols and spodosols would increase in extent with increased soil weathering. But could it also mean lower plant disease, and more nutritious crops? Increased carbonic acid would drive faster pedogenesis, as would increased the biological activity stimulated by higher carbon dioxide. For soil, that would mean a richer solute content in the soil water, more rapid formation of secondary minerals, more eluviation or translocation of minerals with percolation. To the list of pedological shifts at the soil order level, we can add the expansion of spodosols at the expense of inceptisols.

Something very positive can be expected for soil that is not captured in the shifting soil order paradigm. For plants and soil microbes, richer solute content would mean greater availability of mineral nutrients. In soil husbandry and slow food circles, higher mineral availability translates to healthier soil, lower plant disease, and more nutritious harvests. What the shifting soil order paradigm does signal is that soils will be at greater risk of losing their fertility to leaching. Having the soil chockablock full of biochar will be essential to mitigate this last effect. Let's start now.

(Recycled from nscss.org)

Biostasy

The Theory of Biorhexistasy describes climatic conditions necessary for periods of soil formation (pedogenesis) separated by periods of soil erosion. Proposed by pedologist H. Erhart in 1951, the theory defines two climatic phases: biostasy and rhexistasy.

If I recall, H. Erhart figured this out while on the Congo river contemplating a low sediment load in a high rainfall, potentially highly erosive setting. Impressive. There is a soil science truism that clean water is hungry water, and can't wash across or through the land without taking some with. From a soil scientist's perspective, water is soil in highly dilute form. (So is air.)

Reading between the lines, I don't think Erhart had a research budget much beyond travel expenses. He simply deduced from what he knew of tropical weathering that the river had to be laden with dissolved minerals, calcium especially, washed from the soil by percolating rain water. Groundbreaking as that was in its own right, he didn't stop there. Using induction, he reasoned that when similar conditions dominated it ages past, rivers would have delivered abundant calcium to ancient seas subsequently (at the close of the age, perhaps) yielding vast limestone deposits. He saw these ages as lush, moist, and warm with accelerated chemical weathering accompanied by the formation of deep soils. Biostasy. Between periods of biostasy, he envisioned conditions dominated instead by physical weathering: severe fluctuations in temperature and moisture, sparse vegetation, shallow exposed soils, rivers choked with sediments, but with low solute content. This insight informs interpreting endokarstic sediments(Yves Quinif) in Europe where stalacite formation is observed to be greatest, and with least sediment, during interglacial periods due to higher dissolved calcium content, and less soil erosion.

Simply as a mental exercise, consider a scenario where atmospheric carbon dioxide hits 1200 ppm 200 years from now. In the context of biorhexistasy, what is going to dominate? biostasy, rhexistasy or will it be something well outside H. Erhart's elegant construct? Considering that the Congo and the sediment laden Nile coexist in the same age, it is certainly conceivable that biorhexistasy will continue to play out differently based on location, with neither dominating. But the undeniable effect of higher carbon dioxide is higher chemical weathering. So maybe rhexistasy during the transition, followed by biostasy.

(Recycled from nscss.org)

Wednesday, February 14, 2007

Soils and its role in a changing climate

Roger Pielke Sr., over at his research group's climate science blog, has been holding forth on land use change and its impacts on long-term near surface temperature. His position is that the role of land use must be further emphasized within the climate change framework. Search for "soil" and "land" for a long list of supporting posts.

This goes beyond deforestation and urban heat islands. Dust and alterations in atmospheric water content play unknown roles and interact with albedo in sometimes counterintuitive ways. For example, irrigation warms rather than cools the land. Evaporative cooling is insufficient to drive net cooling of irrigated regions. Soils darkened by moisture absorb more heat than dry soils and re-radiate more heat during the night. This results in warmer nights and warmer average temperatures.

Current climate models are not sensitive to changes in land use. Neither are they sensitive to the soil's role in affecting atmospheric carbon levels.

Soil organic matter, at roughly 1500 GtC, is the single largest compartment of carbon in the active biogeochemical cycle. At 60 GtC annual flux (in either direction), it is 10 times larger than the 5.5 GtC flux due to burning fossil fuel. Yet soil is the component of the carbon cycle that we know the least about.

Most soil scientists agree with the unvalidated concept that soil carbon levels will likely decline in step with temperature increases. Higher biological activity will result in more decomposition of organic matter. One certainly sees a similar relationship between soil carbon and temperature when comparing the effect of elevation, aspect and latitude. That we have yet to validate it is telling.
Current climate models mostly ignore the specific role that soil microbes play in the release of carbon dioxide into the atmosphere. The information they do include is often based on assumptions that have never been tested in the field, and may be wrong or overly simplistic.
Our climate models are telling us we need to become far more efficient and more conservative in managing our planet's carbon, soil-wise and fuel-wise. But our scientific understanding will never be adequate for crafting our full response to climate change.
The fact is that our climate is infinitely complex. The models climatologists use to predict the future are incredibly sophisticated, yet blunt instruments. Scientists can never account for all the variables involved - indeed, no one has successfully come up with a mathematical equation to describe the formation of a single cloud. And scientists are often woefully out of their depth in the real world. History is littered with lives and regimes that were wrecked when science was allowed to drive policy with no thought to humanity. Tearing down the global carbon-based economy to - in theory - replace it at a later date with unproven and undeveloped technologies would be a similar folly. It is only by tempering science with economics and the market, which is the most efficient arbiter of humanity's wants and needs, that smart climate policy can be made.
Science and the market are partners of longstanding. Economic necessity, as the mother of invention, has been driving the advance of science for as long as science has been an identifiable pursuit.

Distorted Vision
Originally uploaded by uaezlulu.

Friday, February 24, 2006

Carbon Coalition Against Global Warming

The Carbon Coalition Against Global Warming says that the best way to combat Global Warming is to encourage farmers to cultivate deep-rooted perennial grass species and crops that can lock vast amounts of carbon up in the soil.


A new farmers’ movement was launched this week in central western New South Wales. The Carbon Coalition was launched at the Central West Conservation Farmers Association Annual Conference in Wellington.

The Carbon Coalition aims to promote organic carbon contained in agricultural soils as a carbon sink to earn tradable credits on the greenhouse emissions market.

Farmers would then be paid up to AUS$3,000 per hectare for “sequestering” carbon in the soil. To date only forests have been recognised as tradable for carbon credits.
Maybe. I have a little heartburn over an expectation that the scientific community has promoted that leads us to believe that we can create a significant, persistent sink of carbon by using established farming and forestry approaches. The signal-to-noise ratio in applicable soil carbon sequestration data seems quite high low, especially in regards to a convincing ability to actually "lock in" the soil carbon sunk in the sink. I wouldn't feel so uncomfortable if there wasn't so much money at stake. Governments and carbon generating industries seem very eager to act with little in the way of verification. Landowners, ever strapped by a system seemingly stacked against the food and fiber producer, see a key tool for economic survival. Fundamental soil science and biology get relegated to the back seat while folks work out the international carbon credit and payment mechanisms.

At the front end, soil will naturally sequester more carbon as atmospheric carbon increases. Yet no one seems to talk about measuring performance against this moving baseline. At the back end, considering
the millenial timescale relevant to climate change, persistence is a very real issue.

As mentioned, I have a little heartbun about carbon credit mechanisms, but not a huge amount at this point. Work in the area of ammending soil with bio-char and, separately or in combination with bio-char, promoting mycorrhyzal fungi to produce glomalin seem both very promising in terms of the fundamental science. Both are fairly recent discoveries with huge implications. Hopefully we have a few more rabbits to pull out of the living soil hat.


Saturday, January 28, 2006

Glomalin, science, CO2 and climate change

Atmospheric CO2 concentration is expected to increase by 50% near the middle of this century. Indications are strong that rising CO2 effects higher soil organic carbon content in some cases. Glomalin, which accounts for 1/3 of soil carbon, is of particular interest because of its important role in binding soil aggregates and increasing nitrogen use efficiency. The Center for the Study of Carbon Dioxide and Global Change has updated their excellent summary about the CO2 - glomalin relationship. There is a great reference list to dive into.

Image source: USDA-ARS: Glomalin: A Manageable Soil Glue (pdf brochure)