Showing posts with label analysis. Show all posts
Showing posts with label analysis. Show all posts

Tuesday, May 08, 2007

Carbon Sequestration for Farm, Forest Income

The New York Times has an article about selling carbon credit through the Chicago Climate Exchange (CCX).:

An acre of pine forest captures and holds one to two metric tons of carbon dioxide per year, which it uses for photosynthesis. Untilled cropland holds a third of a ton of carbon per acre, and rangeland holds up to a fifth of a ton. The sequestered carbon dioxide is measured by soil tests before and after the planting.

Carbon dioxide credits now sell for about $4 a metric ton. Mandatory restrictions, experts say, could increase the price to $12 or higher. In Europe, the cost of a credit sold for sequestering carbon dioxide has reached $20, and even $30, a ton.
The market for carbon credits seems to hover between $3 and $4. A review of past CCX newsletters reveals sporadic volume, with common fluctuations of $0.50 to $0.75 per metric ton per month. The New York Times article suggests that biological sequestration will ultimately be replaced with geological sequestration. Expectations of sustaining $20 or $30 a ton seem unrealistic.

$3-$4 is far better than the $0.25 that the Confederated Tribes of the Colville Reservation in Washington received for forested land in the 1990s.

The Tri-Societies' science policy blog has a post about Farming Carbon:
Currently, farmers who wish to profit from the sequestration potential of their soils can sell carbon credits on the (CCX).
Science is needed to better quantify the carbon flux and carbon sinks.
At present, aggregators don't attempt to gauge the carbon impact of individual farms nor do they quantify counterbalancing emissions of traces gases. Hopefully, ASA/CSSA/SSSA members can play a constructive role in the CCX, providing the scientific basis on which aggregators will improve their climate accounting.
I would like to see more discussion on the nuts and bolts of accounting and verification.


Flickr Source: George sampling 3/2/07 ESA Common

Saturday, February 24, 2007

Rejuvenating Soil Life Requires Patience

Soil data is "noisy" data. Being a difficult medium to observe and measure, soil has an almost weird capacity to mask change.

In several instances that I can recall, it seemed improvement in soil carbon status was not evident until several years after a change in management was made. The increases in soil organic matter called intervening data into question.

You can see similar data fluctuations due to individual samplers, but this delayed stepping pattern of carbon increase happens a little too often to ignore. It is as if the momentum for an increase in carbon must first collect in the biological dynamic of the soil, invisible to our simple agricultural analysis tools where we measure TKN, TOC and C:N ratios. Those were my thoughts as I read the following:


The Four Phases of No-Till

Phase one, initialization, occurs in the first five years. It is where soil structure starts to improve and microbial activity increases. Additional nitrogen is required to do that.

"As organic matter increases, you need the added nitrogen to make more of it," Towery said.

The second phase is transition from the fifth to tenth years. This is when organic matter accumulates, soil aggregation and soil microbial activity elevates, phosphorous accumulates, and nitrogen immobilization and greater mineralization occurs.

Phase three is consolidation, from 11 to 20 years. In this period, carbon accumulates and additional water is available in the soil. Further nitrogen mineralization and immobilization occurs and there is an increase in cation exchange capacity (CEC) and nutrient cycling.

"These years aren't perhaps exact, because this phase depends on your latitude and your soils," Towery said.

The fourth and final phase is maintenance, which comes after 20 years. It brings a continuous flow of nitrogen and carbon, greater availability of water and high nutrient cycling with increases in nitrogen and phosphorus.

"Twenty years is a long time. It's not like you've arrived at the Promised Land but things do change with the soil," Towery said. "It's because it is a dynamic system. The technology and management strategies you use changes over time as you go from phase to phase.

"One change we underestimate is the changes in soil biology. We can't see them but they're there."



Photo: No-Till Milo in Wheat Stubble

Technorati Tags:

Friday, February 24, 2006

MPOG - Microbial Prospection for Oil and Gas

Microbial Prospectation looks for anomolies in microbial populations. The presence of various groups of methane-, propane- and butane-oxidizing micro-organisms can reliably differentiate between prospective and non-prospective areas, as well as between oil and gas reservoirs. The result of many years of exerience, the success rate exceeds 90%. This stand-alone approach is inexpensive, probably benefiting from recent computational improvements in characterizing microbial genetic characteristics. Makes you wonder what other benefits will accrue from these types of advances.

Read more at Microbial Prospection and Recovery for Oil and Gas

Tip from: OilNetCom Blog

Wednesday, February 01, 2006

Precise common sense II

Elton Robinson expands nicely on the previous post by email:

The variable-rate application of inputs is actually well developed and prospering in Mid-South cotton fields. It works for two reasons. One, we have highly variable soils along the Mississippi River Delta, which in turn creates variable yields. Second, the cotton crop demands intense in-season management for plant growth, insects, weed management, disease and harvest preparation.

Infrared aerial photography and electrical conductivity mapping carts can pick up the variation in soil type when the ground is bare and pick up plant biomass when the crop is growing. Geo-referenced maps generated from the imagery allow the farmer to vary applications of plant growth regulator, defoliants and other inputs during the season based on variability in biomass. For example, the poor-yielding parts of the field will receive less plant growth regulator to allow plants to catch up with the better-yielding parts of the field, which in turn will receiver more plant growth regulator, to prevent vegetative growth. The result is higher yield and lower cost.

The cost to the farmer for the imagery, and variable-rate prescription is $7 per acre. Sprayers can be adapted for variable rate applications for $6,000. The cost of producing cotton is about $500 an acre. A conservative savings in input costs of 10 percent plus a 5 percent increase in yield would put $65 an acre in the farmer’s pocket. If he farms 1,000 acres of cotton, that $65,000, more than enough to pay off the cost of the technology in year one.

The technology is not affordable if there is little variability in the soil, or if a crop (corn, soybeans) does not respond as well to in-season management. I did read your previous blog on VR nitrogen, and agree that it's been very difficult for researchers to show a benefit.

Tuesday, January 31, 2006

Precise common sense

Precision ag implies computer mapped lab data and GPS controlled field equipment. Higher yields, less flying blind and easier farming. The reality is that the expense of data collection, analysis and interpretation can quickly wipeout any added value. Reading this article about variable rate management of cotton, it struck me that common sense and curiosity are the missing ingredients. Elton Robinson with Delta Press reports on cotton producer Kenneth Hood, Mississippi, who attributes his success with variable rate agriculture to, among other things, reliance on aerial photo interpretation, an approach not typical of precision agriculture. Hood says that the “... advantage to imagery is that very little data collection is required, according to Hood, “which is unlike most precision agriculture practices.” Put this experience together with the recent cryptic news on the lukewarm record of precision agriculture in Germany, which I touched on earlier, and what do you get? My sense is that Kenneth Hood is going to have lots of company.